科技中心

数据挖掘之贝叶斯

14 4月 , 2019  

原标题:当贝叶斯,奥卡姆和香农一起来定义机器学习

贝叶斯推理

贝叶斯法则

朴素贝叶斯分类器

应用:文本分类

图片 1

1. 贝叶斯推理

–提供了推理的一种概率手段

–两个基本假设:

(1)待考察的量遵循某概率分布

(2)可根据这些概率以及观察到的数据进行推理,以作作出最优的决策

–贝叶斯推理对机器学习十分重要:

        为衡量多个假设的置信度提供了定量的方法

        为直接操作概率的学习算法提供了基础

        为其他算法的分析提供了理论框架

–机器学习的任务:在给定训练数据D时,确定假设空间H中的最佳假设

        最佳假设:
在给定数据D以及H中不同假设的先验概率的有关知识下的最可能假设

–概率学习系统的一般框架

图片 2

倒计时8**天**

2. 贝叶斯法则

2.1 基本术语

D :训练数据;

H : 假设空间;

h : 假设;

P(h):假设h的先验概率(Prior Probability)

        即没有训练数据前假设h拥有的初始概率

P(D):训练数据的先验概率

        即在没有确定某一假设成立时D的概率

P(D|h):似然度,在假设h成立的情况下,观察到D的概率;

P(h|D):后验概率,给定训练数据D时h成立的概率;

2.2 贝叶斯定理(条件概率的应用)

图片 3

公式

        后验概率正比于P(h)和P(D|h)

        反比于P(D):D独立于h出现的概率越大,则D对h的支持度越小

2.3 相关概念

极大后验假设MAP:给定数据D和H中假设的先验概率,具有最大后验概率的假设h:

图片 4

计算公式

极大似然假设ML:当H中的假设具有相同的先验概率时,给定h,使P(D|h)最大的假设hml:

图片 5

计算公式

新智元将于9月20日在北京国家会议中心举办AI
WORLD
2018世界人工智能峰会,MIT物理教授、未来生命研究所创始人、《生命3.0》作者Max
Tegmark,将发表演讲《我们如何利用AI,而不是被其压制》
,探讨如何直面AI军事化和杀人武器的出现,欢迎到现场交流!

3. 贝叶斯分类器

图片 6

图片 7

图片 8

图片 9

4. 文本分类

算法描述:

图片 10

图片 11

来源:towardsdatascience

作者:Tirthajyoti Sarkar

【新智元导读】当贝叶斯、奥卡姆和香农一起给机器学习下定义,将统计学、信息理论和自然哲学的一些核心概念结合起来,我们便会会发现,可以对监督机器学习的基本限制和目标进行深刻而简洁的描述。

令人有点惊讶的是,在所有机器学习的流行词汇中,我们很少听到一个将统计学、信息理论和自然哲学的一些核心概念融合起来的短语。

而且,它不是一个只有机器学习博士和专家懂得的晦涩术语,对于任何有兴趣探索的人来说,它都具有精确且易于理解的含义,对于ML和数据科学的从业者来说,它具有实用的价值。

这个术语就是最小描述长度(Minimum Deion Length)。

让我们剥茧抽丝,看看这个术语多么有用……

贝叶斯和他的理论

我们从托马斯·贝叶斯(Thomas
Bayes)说起,顺便一提,他从未发表过关于如何做统计推理的想法,但后来却因“贝叶斯定理”而不朽。

图片 12

Thomas Bayes

那是在18世纪下半叶,当时还没有一个数学科学的分支叫做“概率论”。人们知道概率论,是因为亚伯拉罕 ·
棣莫弗(Abraham de Moievre)写的《机遇论》(Doctrine of
Chances)一书。

1763年,贝叶斯的著作《机会问题的解法》(An
Essay toward solving a Problem in the Doctrine of
opportunities)被寄给英国皇家学会,但经过了他的朋友理查德·普莱斯(Richard
Price)的编辑和修改,发表在伦敦皇家学会哲学汇刊。在那篇文章中,贝叶斯以一种相当繁复的方法描述了关于联合概率的简单定理,该定理引起了逆概率的计算,即贝叶斯定理。

自那以后,统计科学的两个派别——贝叶斯学派和频率学派(Frequentists)之间发生了许多争论。但为了回归本文的目的,让我们暂时忽略历史,集中于对贝叶斯推理的机制的简单解释。请看下面这个公式:

图片 13

这个公式实际上告诉你,在看到数据/证据(可能性)之后更新你的信念(先验概率),并将更新后的信念程度赋予后验概率。你可以从一个信念开始,但每个数据点要么加强要么削弱这个信念,你会一直更新你的假设

听起来十分简单而且直观是吧?很好。

不过,我在这段话的最后一句话里耍了个小花招。你注意了吗?我提到了一个词“假设”。

在统计推理的世界里,假设就是信念。这是一种关于过程本质(我们永远无法观察到)的信念,在一个随机变量的产生背后(我们可以观察或测量到随机变量,尽管可能有噪声)。在统计学中,它通常被称为概率分布。但在机器学习的背景下,它可以被认为是任何一套规则(或逻辑/过程),我们认为这些规则可以产生示例或训练数据,我们可以学习这个神秘过程的隐藏本质。

因此,让我们尝试用不同的符号重新定义贝叶斯定理——用与数据科学相关的符号。我们用D表示数据,用h表示假设,这意味着我们使用贝叶斯定理的公式来尝试确定数据来自什么假设,给定数据。我们把定理重新写成:

图片 14

现在,一般来说,我们有一个很大的(通常是无限的)假设空间,也就是说,有许多假设可供选择。贝叶斯推理的本质是,我们想要检验数据以最大化一个假设的概率,这个假设最有可能产生观察数据(observed
data)。我们一般想要确定P(h|D)的argmax,也就是想知道哪个h的情况下,观察到的D是最有可能的。为了达到这个目的,我们可以把这个项放到分母P(D)中,因为它不依赖于假设。这个方案就是最大后验概率估计(maximum a posteriori,MAP)。

现在,我们应用以下数学技巧:

  • 最大化对于对数与原始函数的作用类似,即采用对数不会改变最大化问题
  • 乘积的对数是各个对数的总和
  • 一个量的最大化等于负数量的最小化

图片 15

那些负对数为2的术语看起来很熟悉是不是……来自信息论(Information
Theory)!

让我们进入克劳德·香农(Claude Shannon)的世界吧!

香农和信息熵

如果要描述克劳德·香农的天才和奇特的一生,长篇大论也说不完。香农几乎是单枪匹马地奠定了信息论的基础,引领我们进入了现代高速通信和信息交流的时代。

香农在MIT电子工程系完成的硕士论文被誉为20世纪最重要的硕士论文:在这篇论文中,22岁的香农展示了如何使用继电器和开关的电子电路实现19世纪数学家乔治布尔(George
Boole)的逻辑代数。数字计算机设计的最基本的特征——将“真”和“假”、“0”和“1”表示为打开或关闭的开关,以及使用电子逻辑门来做决策和执行算术——可以追溯到香农论文中的见解。

但这还不是他最伟大的成就。

1941年,香农去了贝尔实验室,在那里他从事战争事务,包括密码学。他还研究信息和通信背后的原始理论。1948年,贝尔实验室研究期刊发表了他的研究,也就是划时代的题为“通信的一个数学理论”论文。

香农将信息源产生的信息量(例如,信息中的信息量)通过一个类似于物理学中热力学熵的公式得到。用最基本的术语来说,香农的信息熵就是编码信息所需的二进制数字的数量。对于概率为p的信息或事件,它的最特殊(即最紧凑)编码将需要-log2(p)比特。

而这正是在贝叶斯定理中的最大后验表达式中出现的那些术语的本质!

因此,我们可以说,在贝叶斯推理的世界中,最可能的假设取决于两个术语,它们引起长度感(sense
of length),而不是最小长度。

那么长度的概念是什么呢?

Length (h): 奥卡姆剃刀

奥卡姆的威廉(William of
Ockham,约1287-1347)是一位英国圣方济会修士和神学家,也是一位有影响力的中世纪哲学家。他作为一个伟大的逻辑学家而享有盛名,名声来自他的被称为奥卡姆剃刀的格言。剃刀一词指的是通过“剔除”不必要的假设或分割两个相似的结论来区分两个假设。

奥卡姆剃刀的原文是“如无必要勿增实体”。用统计学的话说,我们必须努力用最简单的假设来解释所有数据。


相关文章

发表评论

电子邮件地址不会被公开。 必填项已用*标注

网站地图xml地图